NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex.

نویسندگان

  • A C Flint
  • U S Maisch
  • J H Weishaupt
  • A R Kriegstein
  • H Monyer
چکیده

NMDA receptors play important roles in learning and memory and in sculpting neural connections during development. After the period of peak cortical plasticity, NMDA receptor-mediated EPSCs (NMDAR EPSCs) decrease in duration. A likely mechanism for this change in NMDA receptor properties is the molecular alteration of NMDA receptor structure by regulation of NMDA receptor subunit gene expression. The four modulatory NMDAR2A-D (NR2A-D) NMDA receptor subunits are known to alter NMDA receptor properties, and the expression of these subunits is regulated developmentally. It is unclear, however, how the four NR2 subunits are expressed in individual neurons and which NR2 subunits are important to the regulation of NMDA receptor properties during development in vivo. Analysis of NR2 subunit gene expression in single characterized neurons of postnatal neocortex revealed that cells expressing NR2A subunit mRNA had faster NMDAR EPSCs than cells not expressing this subunit, regardless of postnatal age. Expression of NR2A subunit mRNA in cortical neurons at even low levels seemed sufficient to alter the NMDA receptor time course. The proportion of cells expressing NR2A and displaying fast NMDAR EPSCs increased developmentally, thus providing a molecular basis for the developmental change in mean NMDAR EPSC duration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to neuronal survival and synaptic potentiation, as well as neuronal death

It has been suggested that NR2B-containing NMDA receptors have a selective tendency to promote pro-death signalling and synaptic depression, compared to the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasyna...

متن کامل

Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling.

How individual receptive field properties are formed in the maturing sensory neocortex remains largely unknown. The shortening of N-methyl-d-aspartate (NMDA) receptor currents by 2A subunit (NR2A) insertion has been proposed to delimit the critical period for experience-dependent refinement of circuits in visual cortex. In mice engineered to maintain prolonged NMDA responses by targeted deletio...

متن کامل

NMDA receptor subtypes at autaptic synapses of cerebellar granule neurons.

We studied the action potential-evoked autaptic N-methyl-d-aspartate receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) using solitary cerebellar neurons cultured in microislands from wild-type (+/+), NR2A subunit knockout (NR2A-/-), and NR2C subunit knockout (NR2C-/-) mice. The peak amplitude of autaptic NMDA-EPSCs increased for all genotypes between days in vitro 8 (DIV8) and DIV...

متن کامل

Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret.

Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. The NMDA subtype of glutamate receptor is known to exhibit marked changes in subunit composition and functional properties during neural development. The prevailing idea is that NMDA receptor-mediated synaptic responses decrease in duration after the peak of cortica...

متن کامل

Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses.

We describe a homeostatic mechanism that limits NMDA receptor currents in response to early light activation of a developing visual pathway. During the second postnatal week of rodent retinocollicular development, the Ca2+-activated phosphatase calcineurin (CaN) mediates a rapid, activity-induced shortening in the decay time of NMDA receptor (NMDAR) currents. We show that protein kinase A acts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 1997